114 research outputs found

    Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation

    Get PDF
    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated; ranging between outburst flood events through to gradually occurring channel propagation. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial landforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing an organised pattern of sub-parallel, semi-regularly spaced valleys that form in distinctive clusters. The tunnel valleys are typically <20 km long, and 0.5-3 km wide, although their width varies considerably down-valley. They preferentially terminate at moraines, which suggests that formation is time dependent, while we also observe some tunnel valleys that have grown headwards out of hill-hole pairs. Analysis of cross-cutting relationships between tunnel valleys, moraines and outwash fans permits reconstruction of channel development in relation to the retreating ice margin. This palaeo-drainage reconstruction demonstrates incremental growth of most valleys, with some used repeatedly or for long periods, during deglaciation, while others were abandoned shortly after their formation. Our data and interpretation supports gradual (rather than a single-event) formation of most tunnel valleys with secondary contributions from flood drainage of subglacial and or supraglacially stored water down individual tunnel valleys. The distribution and morphology of tunnel valleys is shown to be sensitive to regional factors such as basal thermal regime, ice and bed topography, timing and climate

    A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin, Canada

    Get PDF
    © 2020 Author(s). We identify and map visible traces of subglacial meltwater drainage around the former Keewatin Ice Divide, Canada, from high-resolution Arctic Digital Elevation Model (ArcticDEM) data. We find similarities in the characteristics and spatial locations of landforms traditionally treated separately (i.e. meltwater channels, meltwater tracks and eskers) and propose that creating an integrated map of meltwater routes captures a more holistic picture of the large-scale drainage in this area. We propose the grouping of meltwater channels and meltwater tracks under the term meltwater corridor and suggest that these features in the order of 10s-100sm wide, commonly surrounding eskers and transitioning along flow between different types, represent the interaction between a central conduit (the esker) and surrounding hydraulically connected distributed drainage system (the meltwater corridor). Our proposed model is based on contemporary observations and modelling which suggest that connections between conduits and the surrounding distributed drainage system within the ablation zone occur as a result of overpressurisation of the conduit. The widespread aerial coverage of meltwater corridors (5%-36% of the bed) provides constraints on the extent of basal uncoupling induced by basal water pressure fluctuations. Geomorphic work resulting from repeated connection to the surrounding hydraulically connected distributed drainage system suggests that basal sediment can be widely accessed and evacuated by meltwater

    Glacial geomorphology of Marguerite Bay Palaeo-Ice stream, western Antarctic Peninsula

    Get PDF
    This paper presents a glacial geomorphological map of over 17,000 landforms on the bed of a major palaeo-ice stream in Marguerite Bay, western Antarctic Peninsula. The map was compiled using various geophysical datasets from multiple marine research cruises. Eight glacial landform types are identified: mega-scale glacial lineations, crag-and-tails, whalebacks, gouged, grooved and streamlined bedrock, grounding-zone wedges, subglacial meltwater channels, gullies and channels, and iceberg scours. The map represents one of the most complete marine ice-stream signatures available for scrutiny, and these data hold much potential for reconstructing former ice sheet dynamics, testing numerical ice sheet models, and understanding the formation of subglacial bedforms beneath ice streams. In particular, they record a complex bedform signature of palaeo-ice stream flow and retreat since the last glacial maximum, characterised by considerable spatial variability and strongly influenced by the underlying geology. The map is presented at a scale of 1: 750,000, designed to be printed at A2 size, and encompasses an area of 128,420 km2

    Antarctic palaeo-ice streams

    Get PDF
    We review the geomorphological, sedimentological and chronological evidence for palaeo-ice streams on the continental shelf of Antarctica and use this information to investigate basal conditions and processes, and to identify factors controlling grounding-line retreat. A comprehensive circum-Antarctic inventory of known palaeo-ice streams, their basal characteristics and minimum ages for their retreat following the Last Glacial Maximum (LGM) is also provided. Antarctic palaeo-ice streams are identified by a set of diagnostic landforms that, nonetheless, display considerable spatial variability due to the influence of substrate, flow velocity and subglacial processes. During the LGM, palaeo-ice streams extended, via bathymetric troughs, to the shelf edge of the Antarctic Peninsula and West Antarctica, and typically, to the mid-outer shelf of East Antarctica. The retreat history of the Antarctic Ice Sheet since the LGM is characterised by considerable asynchroneity, with individual ice streams exhibiting different retreat histories. This variability allows Antarctic palaeo-ice streams to be classified into discrete retreat styles and the controls on grounding-line retreat to be investigated. Such analysis highlights the important impact of internal factors on ice stream dynamics, such as bed characteristics and slope, and drainage basin size. Whilst grounding-line retreat may be triggered, and to some extent paced, by external (atmospheric and oceanic) forcing, the individual characteristics of each ice stream will modulate the precise timing and rate of retreat through time

    Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery

    Get PDF
    Supraglacial rivers set efficacy and time lags by which surface meltwater is routed to the englacial, subglacial, and proglacial portions of ice masses. However, these hydrologic features remain poorly studied mainly because they are too narrow (typically <30 m) to be reliably delineated in conventional moderate-resolution satellite images (e.g., 30 m Landsat-8 imagery). This study demonstrates the utility of 10 m Sentinel-2 Multi-Spectral Instrument images to map supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap, covering a total area of ∼10,000 km2. Sentinel-2 and Landsat-8 both capture overall supraglacial drainage patterns, but Sentinel-2 images are superior to Landsat-8 images for delineating narrow and continuous supraglacial rivers. Sentinel-2 mapping across the three study areas reveals a variety of supraglacial drainage patterns. In northwest Greenland near Inglefield Land, subparallel supraglacial rivers up to 55 km long drain meltwater directly off the ice sheet onto the proglacial zone. On the Devon and the Barnes ice caps, shorter supraglacial rivers (up to 15–30 km long) are commonly interrupted by moulins, which drain internally drained catchments on the ice surface to subglacial systems. We conclude that Sentinel-2 offers strong potential for investigating supraglacial meltwater drainage patterns and improving our understanding of the hydrological conditions of ice masses globally

    Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt

    Get PDF
    Atmospheric warming is increasing surface melting across the Antarctic Peninsula, with unknown impacts upon glacier dynamics at the ice-bed interface. Using high-resolution satellite-derived ice velocity data, optical satellite imagery and regional climate modelling, we show that drainage of surface meltwater to the bed of outlet glaciers on the Antarctic Peninsula occurs and triggers rapid ice flow accelerations (up to 100% greater than the annual mean). This provides a mechanism for this sector of the Antarctic Ice Sheet to respond rapidly to atmospheric warming. We infer that delivery of water to the bed transiently increases basal water pressure, enhancing basal motion, but efficient evacuation subsequently reduces water pressure causing ice deceleration. Currently, melt events are sporadic, so efficient subglacial drainage cannot be maintained, resulting in multiple short-lived (< 6 day) ice flow perturbations. Future increases in meltwater could induce a shift in glacier dynamic regime, characterised by seasonal-scale ice flow variations

    Subglacial processes on an Antarctic ice stream bed. 2: Can modelled ice dynamics explain the morphology of mega-scale glacial lineations?

    Get PDF
    Mega-scale glacial lineations (MSGLs) are highly elongate subglacial bedforms associated with ice streaming. However, the link between MSGLs and rapid ice flow is largely qualitative, and there have been few attempts to quantitatively link their formation to ice flow characteristics (e.g. ice velocity, thickness, basal shear stress). We take measurements of MSGLs from a palaeo-ice stream that once occupied Marguerite Trough, Antarctic Peninsula and explore a range of possible correlations with ice dynamics generated from an ensemble of numerical modelling experiments that reproduce the deglaciation of the ice stream. Our results confirm that high mean ice velocities and a weak bed correlate with longer MSGLs. Furthermore, the height of MSGLs are low (2–3 m) where modelled basal shear stress is low, but their height tends to be higher and more variable where basal shear stress is larger. The mean density of MSGLs decreases as ice flux increases. Our analysis further suggests that the length of MSGLs is a function of basal ice velocity and time. Although our data/model correlations confirm the importance of ice velocity in MSGL formation, a significant challenge remains if we are to employ MSGLs as a quantifiable measure of past ice stream velocity

    Seasonal evolution of the supraglacial drainage network at Humboldt Glacier, northern Greenland, between 2016 and 2020

    Get PDF
    Supraglacial rivers and lakes are important for the routing and storage of surface meltwater during the summer melt season across the Greenland Ice Sheet (GrIS) but remain poorly mapped and quantified across the northern part of the ice sheet, which is rapidly losing mass. Here we produce, for the first time, a high-resolution record of the supraglacial drainage network (including both rivers and lakes) and its seasonal behaviour at Humboldt Glacier, a wide-outlet glacier draining a large melt-prone hydrologic catchment (13 488 km2), spanning the period 2016 to 2020 using 10 m spatial resolution Sentinel-2 imagery. Our results reveal a perennially extensive yet interannually variable supraglacial network extending from an elevation of 200 m a.s.l. to a maximum of ∼ 1440 m a.s.l. recorded in 2020, with limited development of the network observed in the low-melt years of 2017 and 2018. The supraglacial drainage network is shown to cover an area ranging between 966 km2 (2018) and 1566 km2 (2019) at its maximum seasonal extent, with spatial coverage of up to 2685 km2 recorded during the early phases of the melt season when a slush zone is most prominent. Up-glacier expansion and the development of an efficient supraglacial drainage network as surface runoff increases and the snowline retreats is clearly visible. Preconditioning of the ice surface following a high-melt year is also observed, with an extreme and long-lasting 2019 melt season and over-winter persistence of liquid lakes, followed by low snow accumulation the following spring, culminating in earlier widespread exposure of the supraglacial drainage network in 2020 compared to other years. This preconditioning is predicted to become more common with persistent warmer years into the future. Overall, this study provides evidence of a persistent, yet dynamic, supraglacial drainage network at this prominent northern GrIS outlet glacier and advances our understanding of such hydrologic processes, particularly under ongoing climatic warming and enhanced runoff

    GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland

    Get PDF
    Here we present a comprehensive dataset of glacial geomorphological features covering an area of 65 000 km2 in central west Poland, located along the southern sector of the last Scandinavian Ice Sheet, within the limits of the Baltic Ice Stream Complex. The GIS dataset is based on mapping from a 0.4 m high-resolution digital elevation model derived from airborne light detection and ranging data. Ten landform types have been mapped: mega-scale glacial lineations, drumlins, marginal features (moraine chains, abrupt margins, edges of ice-contact fans), ribbed moraines, tunnel valleys, eskers, geometrical ridge networks, and hill–hole pairs. The map comprises 5461 individual landforms or landform parts, which are available as vector layers in GeoPackage format at https://doi.org/10.5281/zenodo.4570570 (Szuman et al., 2021a). These features constitute a valuable data source for reconstructing and modelling the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian Scandinavian Ice Sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka. The presented data are particularly useful for modellers, geomorphologists, and glaciologists

    Virtual consultation for red eye

    Get PDF
    This article was written with the aim of helping primary care doctors to reflect on their knowledge and skills in managing common ophthalmic condition such as red eye in the community via virtual consultations. Expert opinions (from both ophthalmologists and general practitioners) combined with the evidence from the literature were used to create this article. PubMed was searched for relevant articles related to virtual consultation and red eye using several key words, including “red eye”, “tele-medicine”, “virtual consultation”, “telephone consultation” and “video consultation”. Literature search was started on 15 December 2020 and last updated on 01 February 2021
    corecore